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Abstract 
Resource envelopes provide the tightest exact bounds on the 
resource consumption and production caused by all possible 
instantiations of a temporally flexible plan. We present a 
new algorithm that computes an envelope in O(Maxflow(n, 
m, U)) where n, m and U measure the size of the flexible 
plan. This is an O(n) improvement on the best envelope 
algorithm known so far and makes envelopes more 
amenable to practical use in scheduling algorithms. The 
reduction in complexity depends on the fact that when the 
algorithm computes the constant segment i of the envelope 
it makes full reuse of the maximum flow that was computed 
in order to obtain segment i-1. 

Resource Envelopes 

The execution of plans greatly benefits from temporal 
flexibility. Fixed-time plans are brittle and may require 
extensive replanning due to execution uncertainty. 
Moreover, when plans must deal with uncontrollable 
exogenous events (Morris et al., 2001) temporal flexibility 
cannot be avoided. However, effective algorithms to build 
temporally flexible plans are rare, especially when 
activities produce or consume variable amounts of resource 
capacity. A major obstacle is the difficulty of assessing the 
resource needs across all possible plan executions. 
Methods are available to compute resource consumption 
bounds (Laborie, 2001; Muscettola, 2002). In particular, 
(Muscettola, 2002) proposes a polynomial algorithm to 
compute a resource envelope, the tightest of these bounds. 
By being the tightest possible, resource envelopes can 
potentially save an exponential amount of search (through 
early backtracking and solution detection) when compared 
to using looser bounds. Also, methods that compute 
resource envelopes identify maximally matched sets of 
resource consumer/producers that balance each other for 
any plan execution. This and other structural information 
could be crucial in minimizing the search space and 
suggesting effective scheduling heuristics, potentially 
enabling new classes of highly efficient schedulers. 
However, preliminary studies on schedulers using 
envelopes appear not to show advantages with respect to 
more traditional heuristic methods based on fixed-time 
resource profiles (Pollicella et al., 2003). When compared 
to traditional fixed-time profiling methods, it is critical to 
balance the increased computation cost with the extraction 
of more structural problem information from the envelope 

than backtrack/termination tests and maximum resource 
contention intervals. Making the trade-off advantageous 
requires two complementary approaches. The first reduces 
the cost of computing an envelope; the second devises new 
envelope analysis methods to extract useful heuristics. 
In this paper we address the problem of cost reduction. The 
fastest known resource envelope algorithm (Muscettola, 
2002) computes all piecewise-constant segments of the 
envelope through as many as 2n stages, where n is the 
number of events in the flexible plan. Each stage computes 
a maximum flow using some maximum flow algorithm. 
The worst case complexity is O(n Maxflow(n,m,U)) where 
m is the number of temporal constraints between activities 
in the plan, U is the maximum level of resource production 
or consumption at some activity, and Maxflow(n, m, U) is 
the asymptotic cost of the maximum flow algorithm. 
This staged method, however, can be significantly 
improved since at each stage it recomputes the needed 
maximum flow completely from scratch. This suggests 
using an incremental flow method. Starting from the 
maximum flow at one stage, this method computes the 
maximum flow at the next stage by minimally reducing 
flow when deleting nodes and edges, and by minimally 
increasing flow when adding new nodes and edges (Kumar, 
2003). However, without appropriately ordering flow 
reductions and increases, the asymptotic complexity may 
not improve (at it appears to be the case in (Kumar, 2003)). 
In this paper we introduce an incremental method that 
provably computes an envelope in O(Maxflow(n, m, U)) 
for a large class of maximum flow algorithms. This 
reduction of complexity is significant. Experimental 
analysis has shown that the practical cost of maximum flow 
is usually as low as O (n 1.5) (Ahuja et al., 1993). This 
compares well with O(n log n), the cost of building 
resource profiles for fixed time schedules. This paper is 
organized as follows. We first give a succinct introduction 
to the resource envelope problem and the staged envelope 
algorithm in (Muscettola, 2002). Next we present the new 
incremental algorithm identifying all sources of 
performance improvements. We then prove the complexity 
result and conclude by discussing future work.  

Staged Computation of Envelopes 

In this section we introduce the essential information on the 
envelope problem and the staged algorithm that solves it. 
For a complete discussion, see (Muscettola, 2002). 



Figure 1 shows an activity network with resource 
allocations. The network has two time variables per activity, 
a start event and an end event (e.g., e1s and e1e for activity 
A1), a non-negative flexible activity duration link (e.g., [2, 
5] for activity A1), and flexible separation links between 
events (e.g., [0, 4] from e3e to e4s). Two additional events 
Ts, and Te define a time horizon within which all events 
occur. 
Time origin, events and links constitute a Simple Temporal 
Network. To describe resource production and 
consumption each event has also an allocation value (e.g., 
r31 for event e3s), a numeric weight that represents the 
amount of resource allocated when the event occurs. We 
will assume that all allocations refer to a single, multi-
capacity resource. The extension to multiple resources is 
straightforward. If the allocation is negative an event e−−−− is a 
consumer, if it is positive e++++ is a producer. We assume that 
the temporal constraints are consistent which means that for 
any pair of events the shortest path |e1e2| from e1 to e2 is 
well defined. Each event e can occur within its time bound, 
between the earliest time et(e) = −−−−|eTs| and the latest time 
lt(e) = |Tse|. The triangular inequality |e1e3| ≤≤≤≤ |e1e2| + |e2e3| 
holds for any three events e1, e2 and e3. 

Figure 1: An activity network with resource allocations 

The anti-precedence graph, Aprec, is a graph containing a 
path between any two events e1 and e2 such that |e1 e2| ≤≤≤≤ 0. 
Figure 2 depicts an anti-precedence graph of the network in 
Figure 1 with each event labeled with its time bound and 
resource allocation. 
We can now formally define a resource envelope. For any 
subset of events A, the resource level increment of A is 
∆∆∆∆(A) = 0 if A = ∅∅∅∅, and ∆∆∆∆(A) = ΣΣΣΣe∈∈∈∈A c(e) if A ≠≠≠≠ ∅∅∅∅. If S is 
the set of all possible consistent time instantiations for all 
events and t is a time within the time horizon, the resource 
level at time t for a specific time instantiation s ∈∈∈∈ S  is 
Ls(t) = ∆∆∆∆(Es(t)). Here Es(t) is the set of events e which 
occur at or before t in s. The maximum resource envelope 
is Lmax(t) = maxs∈∈∈∈S Ls(t) and the minimum resource 
envelope is Lmin(t) = mins∈∈∈∈S Ls(t). Since Lmin can be 
computed with obvious term substitution on the method 
that computes Lmax, we only focus on Lmax. 
To compute the resource envelope at time t we partition all 
events into three sets depending on the position of their 
time bound relative to t: 1) the closed events Ct that must 
occur before or at t, i.e., such that that lt(e) ≤≤≤≤ t; 2) the 

pending events Rt that can occur before, at or after t, i.e., 
such that (e) ≤≤≤≤ t < lt(e); and 3) the open events Ot that must 
occur strictly after t, i.e., such that et(e) > t.  
Any resource level increment Ls(t) will always include the 
contribution of all events in  Ct and none of those in Ot but 
can include only some subset of events in Rt, i.e., only 
those that are scheduled before t in s. It is possible to show 
that this subset must be a predecessor set P⊆⊆⊆⊆Rt such that if 
e∈∈∈∈P and e’ follows e in Aprec, then e’∈∈∈∈P. We call 
Pmax(Rt) the (possibly empty) predecessor set with 
maximum non-negative resource level increment. 
The fundamental result reported in (Muscettola, 2002) is 
that Lmax(t) can be determined from the following equation. 
 
Equation 1: Lmax(t) = ∆∆∆∆(Ct)+∆∆∆∆(Pmax(Rt)) 
 

Figure 3: Anti-precedence graph with time/resource usage 

The cost of computing an envelope depends on the cost of 
computing Pmax(Rt). We can compute Pmax(Rt) by solving a 
maximum flow problem on an auxiliary flow network  
F F F F (Rt), the resource increment flow network for Rt. 
The formal definition of a resource increment flow network 
can be found in (Muscettola, 2002). As an example, Figure 
2 gives F F F F (R4) for the activity network in Figure 1. The 
network has a node for each event in R4, an infinite 
capacity flow edge between two events for each edge in 
Aprec (see Figure 2), an edge from the source σσσσ to a 
producer with capacity equal to the producer’s allocation, 
and an edge from a consumer to the sink ττττ with capacity 
equal to the opposite of the consumer’s allocation. 
A complete discussion of maximum flow algorithms can be 
found in (Cormen, Leiserson and Rivest, 1990). Here we 
only highlight a few concepts that we will use in the 
following. A flow is a function f(e1, e2) of pair of events in 
FFFF    (Rt) that is skew-symmetric, i.e., f(e2, e1) = −−−− f(e1, e2), has 
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Figure 2: A resource increment flow network 
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a value no greater than the capacity of edge e1→→→→e2 
(assuming capacity zero if the edge is not in FFFF    (Rt)), and is 
balanced, i.e., the sum of all flows entering an event must 
be zero. A pre-flow is a function defined similarly but that 
relaxes the balance constraint by allowing the sum of 
preflows entering a node to be positive. The total network 
flow is defined as Σe∈Rt f(σσσσ, e) = Σe∈Rt f(e, ττττ). The 
maximum flow of a network is a flow function fmax such 
that the total network flow is maximum. 
A fundamental concept in the theory of flows is the 
residual network, a graph with an edge for each pair of 
nodes in FFFF    (Rt) with positive residual capacity, i.e., the 
difference between edge capacity and flow. Each residual 
network edge has capacity equal to the residual capacity. 
An augmenting path is a path connecting σσσσ to ττττ in the 
residual network. The existence of an augmenting path 
indicates that additional flow can be pushed from σσσσ to ττττ. 
Alternatively, the lack of an augmenting path indicates that 
a flow is maximum. 
We can compute Pmax(Rt) according to the next theorem. 
 
Theorem 2: (Muscettola 2002) Pmax(Rt) is the (possibly 
empty) set of events that are reachable from the source σσσσ 
in the residual network of some fmax of FFFF    (Rt). 
 
From Equation 1 and Theorem 2 (Muscettola, 2002) 
derives a staged envelope algorithm as follows. Consider 
the 2n times ti corresponding to the earliest and latest times 
for all events. Since the envelope level can only change at 
one of these times, the algorithm computes a different level 
for each of them. At a particular ti the algorithm determines 
its closed and pending event sets Ci and Ri, builds F F F F (Ri), 
solves a maximum flow over it, determines Pmax(Ri) 
according to Theorem 2, and computes Lmax(ti) according 
to Equation 1. It is easy to see that the worst-case time 
complexity of this algorithm is O(n Maxflow(n, m, U)). 

Incremental Computation of Envelopes 

In the previously described staged envelope algorithm 
flows are recomputed from scratch for each FFFF (Ri).  
Assuming that the times ti are sorted in increasing order, in 
To reduce cost, we can try and reuse as much as possible of 
the maximum flow computation performed on FFFF (Ri-1). At 
time ti the set of pending events can undergo two 
modifications. First, the events δδδδCi = Ri-1 – Ri move from 
Ri-1 to Ci. These are events e such that ti = lt(e). Second, 
the events δδδδRi = Ri −−−− Ri-1 move from Oi-1 to Ri. These are 
the events e such that ti = et(e). For example, consider the 
activity network in Figure 1 and the process through which 
R3 is transformed into R4. This is described in Figure 4 
where the grayed part of the network is deleted and the 
emphasized part of the network is added at time 4. In 
particular, we have δδδδC4 = {e1s} and δδδδR4 = {e2s}. For 
completeness, we note that  
FFFF    (δδδδC4) consists of node e1s and edge e1s→→→→ττττ while FFFF (δδδδR4) 
consists of node e2s and edge σ→→→→e2s. All other added and 
deleted edges are connectives between FFFF    (R4−−−− δδδδC4) and FFFF 

(δδδδC4) (edges e1e→→→→e1s and e3s→→→→e1s) and between  FFFF (δδδδR4) 
and FFFF    (R4−−−− δδδδC4) (e2s→→→→e1e). 
The sets δδδδCi and δδδδRi satisfy the following fundamental 
properties. 
 
Lemma 3: δδδδCi is a predecessor set contained in Ri. δδδδRi is 
the complement of predecessor set Ri-1 in Ri. 
Proof: We only give the proof for δδδδCi since the one for δδδδRi 
is analogous. Consider a pair of events e1 ∈∈∈∈ δδδδ(Ci) and e2 ∈∈∈∈ 
Ri-1−−−−δδδδCi. From the definition of δδδδCi we have lt(e1) = ti and 
lt(e2) ≥≥≥≥ ti+1. From the triangular inequality lt(e2) ≤≤≤≤ lt(e1) ++++ 
|e1 e2| we deduce |e1 e2| ≥ lt(e2) −−−− lt(e1) ≥≥≥≥ ti ++++ 1 – ti = 1 > 
0.!!!! 
 
Lemma 3 determines what flow edges are eliminated when 
δδδδCi is deleted and what are added when δδδδRi is added. In 
particular, we can only delete edges that enter events in δδδδCi 
or go from δδδδCi to ττττ. Similarly, we can only add edges that 
exit events in δδδδRi or go from σσσσ to δδδδRi. Unlike previous 
proposals for incremental envelope calculation (Kumar, 
2003), our methods relies on events and edges exiting and 
entering the current flow network in a well defined order. 
This is the primary key to reducing complexity in our 

incremental envelope algorithm. 
Directly related to Lemma 3 is the possibility of computing 
the maximum flow of FFFF (Ri) by incrementally modifying 
the flow of FFFF (Ri-1), reusing both flow values and 
intermediate data structures across successive invocations 
of a maximum flow algorithm. We prove that our flow 
modification operators guarantee the optimality at each 
intermediate flow. Maintaining maximality of intermediate 
flows and reusing data structures across flows are keys to 
reduce complexity for different kinds of maximum flow 
algorithms. 
A final factor is minimizing the size of each intermediate 
flow network. We will show that as soon as the weight of 
an intermediate Pmax is used in the envelope calculation, F 
(Pmax) and all of its connecting edges can be safely 
eliminated from further consideration. This reduces flow 
network size and additionally contributes to cost reduction. 

Flow Modification Networks 
We now define the operators needed for the incremental 
envelope algorithm. The philosophy of each operator is 
similar to that used by the flow augmentation method in 
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Figure 4: Incremental modification of a resource flow network 



maximum flow theory. However, we use this method more 
generally not only to augment flow but also to shift flow 
around the network and to reduce flow. The general idea is 
the following. Given a flow network FFFF and one of its 
maximum flows f, an operator first defines an auxiliary 
flow transformation network FFFFT, then finds one of its 
maximum flows fT, and finally produces a flow fnew = f + fT. 
Each FFFFT consists of selected edges in the residual network 
of FFFF for f. Since the properties of flows are preserved when 
adding a flow of a residual network to the flow that 
originated the residual network, fnew is also a flow for 
network FFFF. 
Consider now the resource increment flow network FFFF (Ri-1) 
at stage i-1 and assume that the set of new closed events at 
stage i δδδδCi is not empty. At stage i all events in δδδδCi and all 
of its incoming and outgoing edges will be deleted. This 
also means that any flow that at the end of stage i-1 enters 
δδδδCi will necessarily have to be zeroed, i.e., pushed back 
into FFFF (Ri-1). The value of this flow is the sum of the 
residual capacities of all edges e1→→→→e2 where e1 ∈∈∈∈ δδδδCi and 
e2∈∈∈∈ Ri-1−−−−δδδδCi. Once pushed back, this flow can follow two 
routes. The first reaches ττττ to fill up some non-saturated 
exiting edges of FFFF (Ri-1−−−−δδδδCi). The second reverses all the 
way to σσσσ because it cannot find any way to exit  
FFFF (Ri-1−−−−δδδδCi) through its sink. We call this flow push-back 
operation a flow contraction. The first flow route 
corresponds to a flow shift and the second one is a flow 
reduction. For example, consider the network in Figure 4. 
Assume that at t=3 it is fmax(e1s, ττττ) = 4, fmax(e1e, ττττ) = 1 and 
fmax(e3e, ττττ) = 2. At t=3 the elimination of e1s requires 
pushing back 4 units of flow. However, note that three units 
can still reach ττττ by being shifted to e1e→→→→ττττ. Only one unit of 
flow needs to be pushed back to σσσσ. If we did not shift (as in 
(Kumar, 2003)), three additional units of flow would have 
to be pushed again from σσσσ to ττττ to ensure flow maximality. 
Assume now that at stage i there is also a non-empty set 
δδδδRi of new pending events. Augmenting FFFF (Ri-1−−−−δδδδCi) with 
the part of the resource increment flow network pertaining 
to δδδδRi yields FFFF (Ri). Assume now that FFFF (Ri-1−−−−δδδδCi) is 
traversed by the flow resulting from flow contraction. Even 
if this flow is maximum for FFFF (Ri-1 −−−− δδδδCi), it may not be 
maximum for FFFF Ri) since additional flow could be pushed 
through edges σσσσ→→→→e with e∈∈∈∈δδδδRi. We call this flow push-
forward operation a flow expansion. If at every stage of 
flow contraction and flow expansion we guarantee flow 
maximality, we will obtain a maximum flow for FFFF (Rt(i)) 
that moves a minimal amount of flow. 

Flow Contraction 
Let us call fmax,i-1 the maximum flow for FFFF (Ri-1). In our 
discussion we ignore the structure of the flow sub-network 
for δδδδCi by using an auxiliary flow network FFFFi-1 that 
redirects all flow entering δδδδCi into the sink ττττ. Formally, to 
obtain FFFFi-1 we first delete from FFFF (Ri) all events in δδδδCi, 
together with all their incoming and outgoing flow edges. 
We then add an auxiliary edge e1→→→→ττττ for each set of 
component edges e1→→→→e2 in F(Ri-1) such that e1∈∈∈∈ Ri-1−−−−δδδδCi 
and e2∈∈∈∈δδδδCi. The capacity of the auxiliary edge e1→→→→ττττ is the 
sum of all component edge flows fmax,i-1(e1, e2). We call 

fmax,,i-1 a function over the edges of FFFFi-1  where fmax,i-1(e1,e2) 
is equal to fmax,i-1(e1,e2) if e1→→→→e2 also belongs to FFFF (Ri-1), 
and fmax,i-1(e1,ττττ) is equal to the edge’s capacity if e1→→→→ττττ is 
one of the auxiliary flow edges. It is easy to see that fmax,i-1 
is a maximum flow for Fi-1. We call Resi-1 the residual 
network of FFFFi-1 for fmax,i-1. 
We define a flow shift network Shifti as follows. 
 
Flow shift network: Shifti is a flow network  with the same 
intermediate events of Resi-1. Shifti has a flow edges e1→→→→e2 
equal to a corresponding one in Resi-1 if e1∉∉∉∉{σσσσ,ττττ} and e2≠σσσσ. 
Finally, for each edge τ→e in Resi-1 such that e→τ is an 
auxiliary flow edge in FFFFi-1, Shifti has a corresponding edge 
σ→e of the same capacity. 
 
Let us now call call Res(Shifti) the residual network of Fi-1 
for f’ = fmax,i + fmax,shift,i. We define a flow reduction 
network Reducei as follows. 
 
Flow reduction network: Reducei is a flow network with 
the same nodes as Res(Shifti) and edges e1→→→→e2 identical to 
Res(Shifti) if one of the following three conditions is 
satisfied: 
1) e2≠ττττ; 
2) e1≠σσσσ; 
3) e1=σσσσ and the edge σσσσ→→→→e2 in Shifti originates from an 

auxiliary flow edge for FFFFi-1. 
 
Using Shifti and Reducei, we define the Flow_Contraction 
operator needed by the incremental envelope algorithm. 
 
Flow_Contraction(FFFF (Ri-1) , fmax,i-1, δδδδCi, Aprec ): 

1) Compute a maximum flow max,shift,i for Shifti; 
2) Compute a maximum flow fmax,red,i  for Reducei; 
3) Return fcontr,i=fmax,i+ fmax,shift,i+fmax,red,i  

 
We now prove that the operator keeps the flow maximum. 
 
Lemma 4: The flow f’ = fmax,i + fmax,shift,i is maximum for FFFFi-

1.. 
Proof: f’ is a flow of FFFFi-1. It is also maximum since by 
construction of Shifti it is fmax.shift,i(σσσσ, e) = 0. Therefore f’(σσσσ, 
e) = fmax,i-1(σσσσ, e) and therefore f’ is also maximum for FFFFi-1.  
 
Lemma 5: fcontr,i is a flow for FFFF    (Ri-1−−−−δδδδCi). 
Proof: fcontr,i is a flow for FFFFi-1. For it to be a flow for  
FFFF    (Ri-1−−−−δδδδCi) it must be fcontr,i(e, ττττ)=0 if e→→→→ττττ is an auxiliary 
edge. If it were fcontr,i(e, ττττ) > 0 for an auxiliary edge, by 
using the flow conservation constraint we could show that 
there must be a path from σσσσ to ττττ, passing through e→→→→ττττ, 
with all edges having positive flow. Therefore, there must 
be a flow-reducing path from ττττ to σσσσ in the corresponding 
residual network. Such path is an augmenting path in the 
residual network of Reducei for flow fmax,red,i, which 
contradicts the maximality of fmax,red,i.  
 
Theorem 6: fcontr,i is a maximum flow for FFFF (Ri-1 −−−− δδδδCi ). 



Proof: This is clearly true if fmax,red,i is a null flow since f’ 
is maximum. If fmax,red,i is not null, assume that fcontr,i is not 
maximum. This yields an augmenting path from σσσσ to ττττ  in FFFF 
(Ri-1 −−−− δδδδCi ) for fcontr,i. Since fmax,i is optimal, such path 
could only have appeared after the computation of fmax,shift,i. 
Since f’ is maximum for FFFFi-1, there must be at least one 
edge e1→→→→e2 on the augmenting path that does not belong to 
the residual network of FFFFi-1 for f’ while the suffix path from 
e2 to ττττ has positive residual capacity in Shifti for fmax,shift,i. 
A positive residual for e1→→→→e2 implies that flow reduction 
pushed flow in the opposite direction, i.e., fmax,red,i(e2, e1) > 
0. Consider the last such edge in the augmenting path. By 
backtracing its flow we find a positive flow path for fmax,red,i 
from σσσσ to e2. This can only happen if the capacity of the 
path in Reducei is positive, which is equivalent to a prefix 
path with positive residual capacity in Shifti for fmax,shift,i. 
Tying the prefix and postfix at e2 yields an augmenting path 
in Shifti for fmax,shift,i, impossible since fmax,shift,i is 
maximum.!!!! 

Flow Expansion 
The completion of stage i of the algorithm requires now to 
incorporate the event set δδδδRi to yield Ri and allow the 
computation of Pmax,i = Pmax(Ri). Again, we define an 
incremental operation on an incremental residual flow 
network, the flow expansion network. The network is built 
on the residual network of FFFF (Ri-1 −−−− δδδδCi) for flow fcontr,i. We 
call this residual network Res(Contri). 
 
Flow expansion network: Expandi is a flow network  with 
the intermediate events Ri. Expandi all flow edges e1→→→→e2 
in Res(Contri), all flow edges in FFFF (δδδδRi) and an infinite 
capacity edge e1→→→→e2 for each anti-precedence edge 
between e1 ∈δδδδRi and e2 ∈Ri-1−−−−δδδδCi.  
 
Note that by construction Expandi is the residual network 
in FFFF (Ri) for fcontr,i. We now define the final operator 
needed by the incremental envelope algorithm, 
Flow_Expansion. 
 
Flow_Expansion(FFFF (Ri-1−−−−δδδδCi), fcontr,i, δδδδRi, Aprec): 

1) Compute a maximum flow fmax,exp,i for Expandi; 
2) Return  fmax,i= fcontr,i + fmax,exp,i 

 
Theorem 7: fmax,i computed by Flow_Expansion is  
maximum for FFFF (Ri). 
Proof: fmax,i is clearly a flow for FFFF (Ri). Moreover, fmax,exp,i 
is maximum for Expandi and therefore there is no 
augmenting path in the corresponding residual network. 
The maximality of fmax,i follows from the identity between 
the residual network of Expandi for fmax,exp,i and the 
residual network of FFFF (Ri) for fmax,i.!!!! 

Flow Separation for Pmax 
We can achieve further performance improvements by 
minimizing the number of nodes and flow edges that need 
to be considered at each stage. During stage i two Pmax are 
computed: Pmax,contr,i after Flow_Contractioni and Pmax,i after 

Flow_Expansioni. We know that each Pmax is a predecessor 
set (i.e., it contains all of its successors in the anti-
precedence graph), it is flow isolated (i.e., for each pair of 
events e1∈∈∈∈Pmax and e2 ∈∈∈∈ PC

max, fmax(e1, e2) = 0 and fmax(e2, 
e1) = 0) and has all exit edges saturated (i.e., fmax(e, ττττ) = c(e, 
ττττ) for all e∈∈∈∈Pmax) (Muscettola, 2002). This will allow us to 
prove that FFFF (Pmax,i-1) can be ignored during the 
computation of Flow_Contractioni and FFFF (Pmax,contr,i) can be 
ignored during computation of Flow_Expansioni. 
Let us consider each maximum flow operation executed at 
stage i. The first is flow shifting. Note that by construction, 
the Pmax of FFFFi-1, Pmax,i-1, contains the events in Pmax,i-1 −−−− δδδδCi. 
Pmax,i-1 is a predecessor set since δδδδCi. contains events at the 
bottom of the anti-precedence graph for FFFF (Ri-1). However, 
due to the additional links e→→→→ττττ the value of the positive 
residual of Pmax,i-1 is equal to ∆(Pmax,i-1). Pnax, i-1 is still flow 
insulated and has all exit edges saturated. Assume that flow 
shifting pumped flow to reach an event e’∈∈∈∈Pmax,i-1. In order 
for at least part of such flow to reach ττττ there must be a 
postfix augmenting path that reaches τ from e’. But this is 
impossible since Pmax,i-1 is a predecessor set, all postfix 
paths must remain inside Pmax,i-1, and all exit edges from 
Pmax,i-1 to ττττ are saturated. Therefore, any maximum flow 
algorithm pushing flows that searches for augmenting paths 
can avoid doing so in Pmax,i-1 and any excess flow pumped 
into events of Pmax,i that can achieve ττττ will have to be 
pushed back from Pmax,i-1 to PC

max,,i-1. Therefore we can 
ignore Pmax,i-1 during flow shifting. 
After flow shifting the maximum predecessor set is still 
Pmax,i-1 since flow shifting simply produces a different 
maximum flow for FFFFi-1 and Pmax,i-1 is independent from the 
specific flow instance (Muscettola, 2002). 
Considering now flow reduction, fmax,red,i this can be 
computed by simply backtracing flow in FFFFi-1. Because of 
the flow insulation of Pmax,,i-1, this backtracing is either 
performed exclusively over events in PC

max, i-1 = PC
max,i-1−−−− 

δδδδCi or is confined within the events in Pmax,i.1 = Pmax,i-1 −−−− 
δδδδCi. Note that since after flow reduction all auxiliary edges 
must have zero flow, the producers’ residual of Pmax,i-1 after 
flow contraction must be equal to ∆(Pmax,i-1 −−−− δδδδCi). 
Finally, we can use a similar argument to the one used for 
flow shifting to show that Flow_Expansioni can be 
performed entirely over F(PC

max,contr,i), therefore ignoring 
Pmax,,contr,i. 

Incremental Computation of Lmax 
We are now ready to derive a recursive equations for the 
incremental calculation of Lmax(t) by transforming 
Equation 1 through the application of flow reduction and 
expansion. 

From the discussion on flow separation, we know that, after 
Flow_Contractioni-1, Pmax,contr,I =(Pmax(Ri-1) −−−− δδδδCi) ∪∪∪∪ 
Pmax(P

c
max(Ri-1) −−−− δδδδCi). After Flow_Expansioni,because of 

flow separation, we have Pmax,i = Pmax,contr,i ∪ Pmax(P
C

contr,i 
∪∪∪∪ δδδδRi). 

 



Theorem 8: Lmax(t) satisfies this  recursive equation:  
if t = t1 
 Lmax(t) =  ∆∆∆∆(C1) + ∆∆∆∆(Pmax(R1)) 
 if t = ti and i >1 
 Lmax(t) =  Lmax(ti-1) ++++ i 
   ∆∆∆∆(δδδδCi ∩∩∩∩ PC

max(Ri-1)) ++++ ii 
   ∆∆∆∆(Pmax(P

c
max(Ri-1) −−−− δδδδCi)) ++++ iii 

   ∆∆∆∆(Pmax(δδδδRi ∪∪∪∪ Pc
max(P

c
max(Ri-1−−−− δδδδCi)));  iv 

if t≠≠≠≠ti, then  
 Lmax(t) =  Lmax(t-1). 
Proof: Lmax(t) only changes when Rt changes, i.e., at a time 
ti. Let us consider in turn the application of 
Flow_Contractioni and Flow_Expansioni.  
a) Flow_Contractioni: the level after flow contraction, 

Lmax,contr(ti) is the weight of the closed events after 
contraction and of Pmax,contr,i. Since new events at time 
ti are only closed during flow contraction and Ci and 
Pmax,contr,i are disjoint, Lmax,contr(ti) = ∆∆∆∆(Ci-1 ∪∪∪∪ δδδδCi ∪∪∪∪ 
Pmax,contr,i) = ∆∆∆∆(Ci-1 ∪∪∪∪ δδδδCi ∪∪∪∪ (Pmax(Ri-1) −−−− δδδδCi) ∪∪∪∪ 
Pmax(P

c
max(Ri-1) −−−− δδδδCi)). Since for any two sets A and 

B it is A ∪∪∪∪ (B – A) = B ∪∪∪∪ (A – B), with B and (A–B) 
being disjoint sets, we have δδδδCi ∪∪∪∪ (Pmax(Ri-1) −−−− δδδδCi) = 
Pmax(Ri-1) ∪∪∪∪ (δδδδCi −−−− Pmax(Ri-1)). Since δδδδCi ⊆⊆⊆⊆ Ri-1 =  
Pmax(Ri-1) ∪∪∪∪ PC

max(Ri-1), it is easy to see that δδδδCi −−−− 
Pmax(Ri-1) = δδδδCi ∩∩∩∩ PC

max(Ri-1). This yields Lmax,contr(ti) 
= Lmax(ti-1) + ∆∆∆∆(δδδδCi ∩∩∩∩ PC

max(Ri-1)) + ∆∆∆∆(Pmax(P
c
max(Ri-1) 

−−−− δδδδ(Ci))), i.e., lines i, ii and iii in the theorem’s 
statement. 

b) Flow_Expansioni: the only new increment comes from 
set Pmax(P

C
max,contr,i ∪∪∪∪ δδδδRi) = Pmax(P

C
max(Ri-1 - δδδδCi) ∪∪∪∪ 

δδδδRi) which yields line iv in the theorem’s statement.  
 

Algorithm Time Complexity Complexity Key 
Labeling O(nmU) Total pushable 

flow 
Capacity scaling O(nm logU) Total pushable 

flow 
Successive 
shortest paths 

O(n2m) Shortest distance 
to ττττ 

Generic 
preflow-push 

O(n2m) Distance label 

FIFO 
reflow-push 

O(n3) Distance label 

Table 1: Complexity of maximum flow algorithms 

Figure 5 shows the pseudocode of the algorithm. The 
functions Flow_Contraction and Flow_Expansion receive as 
arguments the current flow network Fcur,which includes the 
current maximum flow, the incremental set of events that 
need to be added/deleted Ecur.{earliest,latest}, and the 
anti-precedence graph Aprec(N) for the set of all events in 
the plan N. Aprec carries the topological information 
needed to expand the flow network. 
Given the current flow network and its maximum flow both 
stored in Fcur, Extract_P_max returns both its maximum 
increment predecessor set Pmax and the restricted network 
and flow resulting from the elimination of the Pmax. 
Comparing with the formula for Lmax(ti) described by 

Theorem 8, line 12 in the algorithm computes i+ii, line 15 
adds iii and line 18 adds iv. Note that the algorithm is 
actually more of a method that can be implemented in 
different ways depending of which maximum flow 
algorithm is used in Flow_Contraction and 
Flow_Expansion. As we shall see the worst-case time 
complexity of the method is the same as that the maximum 
flow algorithm used. We will also see that further 
optimizations are possible when using specific algorithms 
such as push-preflow methods. 

Complexity Analysis 

The complexity analysis of the incremental envelope 
algorithm applies to a large number of maximum flow 
algorithms used for Flow_Contraction and Flow_Expansion. 
Each algorithm has a complexity key, i.e., a measurable 
entity whose static properties or dynamic behavior during 
its computations determines its time complexity. Table 1 
(adapted from (Ahuja, Magnanti and Orlin, 1992)) reports 
the time complexity and complexity key of several 
maximum flow algorithms. 
The Labeling and Capacity Scaling algorithms are based 
on the original Ford-Fulkerson method. The complexity 
depends on the strict monotonicity of the flow pushed at 
each iteration of the algorithm and on the fact that the total 
pushable flow is bound by nU where U is the maximum 

Figure 5: Incremental envelope algorithm 

Incremental_Resource_Envelope (N, Apred(N)) 
{ 1: E := { Group events in the input set N  into entries Et with three 

members: a time t and two lists earliest and latest. Event 
e∈∈∈∈N is included in Et.earliest if et(e) = t and in Et.latest if 
lt(e) = t. Sort the Et in increasing order of t. } 

 2: Lmax := {<-∞∞∞∞, 0>} /* Maximum resource envelope. */ 
 3: tcur := 0; /* Current time */ 
 4: Lold := 0; /* Envelope level at previous iteration. */ 
 5: Lnew := 0; /* Envelope level at current iteration. */ 
 6: Pmax := ∅∅∅∅; /* Maximum increment predecessors.*/ 
 7: Fcur := ∅; /*Resource increment flow graph with associated 

maximum flow */ 
 8: Ecur := ∅∅∅∅; /* Entry from E at tcur. */ 
 9: while (E is not empty) 
10: {Ecur := pop(E); 
11:  tcur := Ecur.t; 
12:  Lnew := Lold + weight (intersection (Events(Fcur), Ecur.latest)); 
13:  Fcur := Flow_Contraction (Fcur, Ecur.latest, Aprec(N)); 
14:  <Pmax, Fcur> := Extract_P_Max (Fcur); 
15:  Lnew := Lnew ++++ weight (Pmax); 
16:  Fcur := Flow_Expansion (Fcur, Ecur.earliest, Aprec(N)); 
17:  <Pmax, Fcur> := Extract_P_max (F); 
18:  Lnew := Lnew ++++ weight (Pmax); 
19:  Lmax := append (Lmax,  <tcur, Lnew>); 
20:  Lold := Lnew; 

 } 
 return Lmax; 
} 



capacity of an edge σσσσ→→→→e or e→→→→ττττ. The successive shortest 
paths class of algorithms is based on the original Edmonds-
Karp algorithm. The complexity depends on the fact that 
flow is pushed through augmenting paths of monotonically 
increasing length. The complexity key for this class of 
algorithms is the shortest distance to ττττ for each event e. For 
these algorithms it is crucial to demonstrate that the 
distance function d(e) increases by at least one unit after 
each iteration. 
Finally, preflow-push algorithms such as generic preflow-
push and FIFO preflow-push (Goldberg and Tarjan, 1988) 
maintain a distance labeling d(e). These algorithms use 
purely local operations that push excess flow available at 
node e1 through edges e1→→→→e2 such that d(e1) = d(e2) + 1. 
When excess flow exists at some node and no such edge 
exist, the node’s distance labeling is increased by the 
minimum amount that re-establishes a one unit difference 
in distance label over an edge. This allows more flow to be 
pushed. The complexity of the algorithms depends on 
creating a valid labeling at each iteration and on the fact 
that for each node the distance labeling is monotonically 
increasing up to 2n-1. 
We now analyze the cumulative cost of computing all flows 
over 2n stages respectively for fmax,shift,i, fmax,red,i and 
fmax,exp,i. First note that at each stage fmax,red,i can be 
computed by flow backtracing through a backwards depth 
first search on the resource increment flow network. Since 
this can cost up to O(m), the total cost of computing flow 
reduction is O(nm) and is therefore smaller than the cost of 
applying a regular maximum flow algorithm. Therefore we 
focus on the cost for the cumulative fmax,shift,i and fmax,exp,i, 

respectively Fshift = ΣΣΣΣi fmax,shift,i and Fexp = ΣΣΣΣi fmax,exp,i. 
 
Lemma 9: Each of  Fshift and Fexp is no greater than n U. 
Proof: Consider Fshift (the argument is similar for Fexp). The 
upper bound of the total capacity of the edges σσσσ→→→→e 
entering Shifti is the total capacity of edges e−→ττττ with 
e−−−−∈∈∈∈δδδδ(Ci). After iteration i all nodes in δδδδCi are eliminated 
from further consideration, hence flow can go through each 
σσσσ→→→→e only during iteration i. Therefore, the total flow is 
upper bounded by Σi |δδδδCi| U = n U.!!!! 
 
Note that the argument above does not hold for Fexp if 
instead of using flow shifting the flow is simply reduced 
and then expanded again (Kumar, 2003). In this case the 
same flow could be pushed up to n times with Fexp being 
O(n2U). This would not improve on the staged envelope 
algorithm. 
Consider now the distance d(e) for node e and how it 
changes when computing fmax,shift,i.and fmax,exp,i. Let us call 
d0

shift,i(e) and df
shift,i(e) the distances at the beginning and at 

the end of flow shifting for iteration i. We define similarly 
d0

exp,i(e) and df
exp,i(e). 

 
Lemma 10: df

exp,i-1(e) ≤ d0
shift,i(e)  and df

shift,i(e) ≤ d0
exp,i(e). 

Proof: Between the end of flow expansion at iteration i-1 
and the start of flow shifting at iteration i, the auxiliary 

flow network changes through the elimination of nodes and 
edges in FFFF (δδδδCi). Therefore, the new distances in the 
remaining residual capacity network can only increase. 
Since Shifti only adds edges σσσσ→→→→e, the distances in Shifti 
must analogously increase and therefore df

exp,i-1(e) ≤ 
d0

shift,i(e). For Expand1 node distances can further increase 
because flow reduction can only eliminate residual network 
edges present in Shifti for fmax,shift,i. Also, from Lemma 3 
the addition of F (δδδδRi)cannot reduce distances since it 
cannot add any edge from an event in Shifti to one in δδδδRt(i). 
Therefore, df

shift,i(e) ≤ d0
exp,i(e).!!!! 

 
Note that the argument in Lemma 10 does not hold if 
events are added in arbitrary order. In this case the addition 
of edges can reduce the distance function of some node e 
between a shifting and an expansion phase. In the worst 
case, this may reduce the distance to one for each 
application of maximum flow and therefore does not 
improve on the staged algorithm. 
Finally, consider reusing distance labeling across preflow-
pushes for shifting and expansion. d0

shift,i, d
f
shift,i, d

0
exp,i and 

df
exp,i are the distance labelings at the beginning and end of 

shifting and expansion. Assume also that the distance label 
of a node that has not yet entered Expandi or Shifti is zero. 
 
Lemma 11: d0

shift,I can be made equal to df
exp,i-1 for all 

nodes in Shifti. Also, d0
exp,i can be made equal to df

shift,I  for 
all nodes in Expandi. 
Proof: The distance label of a node remains valid when 
edges are deleted or new edges are only added to enter it 
from new nodes. Also, a distance function at node e must 
be an upper bound of its labeling. From Lemma 10 we 
know that the distance function can only increase from 
Expandi-1 to Shifti and from Shifti to Expandi. Therefore 
df

exp,i-1 and df
shift,i

 are valid choices respectively for d0
shift,i 

and d0
exp,i..!!!! 

 
We can now prove the main complexity result. 
 
Theorem 12: For a large class of maximum flow 
algorithms, Incremental_Resource_Envelope has time 
complexity O(Maxflow(n, m, U)). 
Proof: Assume we applied one of the maximum flow 
algorithms in Table 1 to find the full maximum flow on the 
entire resource increment flow network (e.g., to compute 
the maximum envelope level over the entire time horizon 
(Muscettola, 2002)) with cost O(Maxflow(n, m, U)). We 
use Lemmas 9, 10 and 11 to prove that the cumulative cost 
of using the same algorithms for flow shifting and flow 
expansion is O(Maxflow(n, m, U)) for the same algorithm. 
1. Labeling and Capacity scaling: Lemma 9 shows that the 

worst case bound for the total flow moved during 
shifting and expansion is at worst twice that for full 
flow calculation. Also, at each iteration during shifting 
and expansion, finding an augmenting path costs at 
most m as for full flow calculation. Hence shifting and 
expansion cost at most O(Maxflow(n, m, U)). 



2. Successive shortest paths: the cost bound for each full 
flow augmentation is an upper bound for that in 
shifting and expansion. The algorithm’s complexity 
also depends on the monotonic increase of the distance 
function up to n after each elementary operation. Note 
that until the deletion of a δδδδCi or a Pmax, a node’s 
distance is bound by n as for the full flow. Monotonic 
increase is guaranteed by the algorithm within each 
shifting and expansion phase and by Lemma 10 across 
phases. Hence, the cost is O(Maxflow(n, m, U)). 

3. Preflow-push methods: the complexity is found through 
amortized analysis (Goldberg and Tarjan, 1988), 
relying on an appropriate potential function ΦΦΦΦ and on 
the determination of its possible variations after the 
applying a local operation (e.g., a saturating or a non-
saturating preflow push). One key observation is the 
monotonic increase of each node’s distance label for 
each local operation. Both for the incremental and for 
the full flow this increase is bound by 2n−−−−1 and 
Lemma 11 guarantees monotonic distance label 
increase across phases. Note that, unlike for the full 
flow, for shifting and expansion ΦΦΦΦ increases also at the 
beginning of each shifting phase, when nodes are 
activated by the creation of initial flow excesses. 
However, a detailed amortized analysis (omitted for 
space limitations) shows that this increase does not 
affect the order of complexity of the shifting and 
expansion phases that remains O(Maxflow(n, m, U)). 

The worst case complexity of the other phases of 
Incremental_Resource_Envelope besides shifting and 
expansion are dominated by O(Maxflow(n, m, U). Flow 
reduction is cumulatively O(nm). The total cost of 
Extract_P_max and of incrementally constructing and 
deleting the flow network, is 2 O(m). Finally the sorting of 
events during initialization is O(n log n).!!!! 

Optimized Preflow-Push Implementation 

If the incremental algorithm is implemented using a 
preflow-push method, the previous complexity analysis 
indicates that, in order to reduce complexity, we need to 
reuse the distance labeling function from the end of a 
maximum flow computation to the start of the next. 
A further optimization is possible. Consider the maximum 
flow calculation on Shifti. During initialization, an excess 
flow is loaded on each event e for each edge σσσσ→→→→e in Shifti. 
We know that only a fraction of this excess flow may reach 
ττττ. The remainder will be pushed back out of Shift1 during 
flow shifting and then pushed again through the flow 
network during flow reduction. In other words, this flow 
travels twice through the network before being eliminated. 
We can remove this duplication as flows. Assume that 
instead of deleting the σσσσ→→→→e edges of FFFFi-1 when constructing 
Shifti we delete instead the σσσσ→→→→e edges of Shifti after 
having performed the appropriate excess loading needed to 
perform flow shifting. In this case the flow that cannot be 
shifted will be pushed back to the source in FFFFi-1,, i.e., FFFF (Ri), 
instead making the additional O(nm) cost of flow reduction 

unnecessary. Another possible optimization consists of 
combining preflow-push through Shifti and Expandi by 
connecting δδδδRi before running the shift/reduce preflow-
push. In this case the flow excess initializations of 
contraction and expansion are combined and a single 
preflow-push is run during phase i. 
These optimizations do not affect asymptotic complexity 
but may have a significant effect in practice. Empirical 
studies will be needed to assess their actual usefulness. 

Conclusions 

We presented a new algorithm that efficiently computes 
resource envelopes for flexible plans. The methods has 
complexity O(Maxflow(n, m, U)) where n and m measure 
the size of the activity plan and U measures the maximum 
resource consumption or production of an activity. We are 
currently experimenting with various implementations of 
the methods. While we expect that for large problem sizes 
the O(n) cost reduction will be evident, practical 
improvements on smaller problems require careful design 
of efficient and minimal data structures. We are also 
addressing the second part of the cost/benefit equation for 
envelopes by exploiting additional structural information 
resulting from the method’s incrementality and designing 
scheduling algorithms that use a minimal search space. 
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